
EXPERIMENTAL STUDY OF THE FORCE OF INTERNAL WAVES ACTING ON A STATIONARY SPHERE 

E. V. Ermanyuk UDC 532.59 

There are a large number of theoretical works on the problem of wave loads acting on 
submerged bodies having simple geometric shapes (see the reviews in [i, 2]). These works 
concerned mainly the case of a fluid with a uniform density. Surface-wave action on 
horizontal and vertical cylinders has been studied in greatest detail experimentally~ The 
literature on this problem is reviewed in [3]. Wave loads exerted by surface waves on a 
submerged sphere were investigated in, for example, [4, 5]. Much less experimental 
information is available on liquids with a nonuniform density (stratified liquids). 
Measurements of the resistance of bodies with close to linear stratification was measured 
experimentally in [6, 7]. The forces exerted by internal waves on elongated bodies with a 
practical geometry were studied experimentally in [8, 9]. 

In the present work we investigated experimentally the force exerted by internal 
waves on a stationary sphere under conditions of close to bilayer stratification for 

characteristic Reynolds numbers ranging from i0 to 280 and Kelegan-Carpenter number ranging 
from 0.06 to 0.95. 

The experiments were performed in a basin with length i = 6 m, width b = 0.2 m, and 
depth h = 0.6 m. The basin was filled with two liquid s of different density. The top 
layer consisted of water with density Pl = 0.999 g/cm 3 and the bottom layer consisted of a 
solution of glycerine in water with density P2 = 1.010 g/cm 3. A diagram of the experimental 
apparatus is displayed in Fig. I. Internal waves were generated with the help of a half- 
cylinder undergoing translational harmonic oscillations along the end wall of the basin. 
The opposite end of the basin was equipped with a wave damper 6 in the form of a plate 
sloping at an angle of 6 ~ with respect to the horizontal plane. Two-component balances 1 
were used to measure the loads acting on the sphere 3. The forces were transferred with the 
help of a rod 2 and submerged knife edges 4 to the elastic elements 5 whose deformation was 
measured with the help of induction displacement sensors. The maximum load in Ale experi- 
ments did not exceed 9-10 -4 N. The elastic displacement of a sphere under the action of 
such a force did not exceed 4.5.10 -3 mm. The diameter of the sphere d = 4 cm. The minimum 
characteristic oscillation frequency of the balances with a model suspended on them in 
water was 2.7 Hz and maximum force frequency in the experiments did not exceed 0.24 Hz. 

A stationary rectangular coordinate system Oxy (Fig. I) was used. The origin of the 
coordinate system was located beneath the center of the sphere. The x axis is horizontal, 
and in the unperturbed state of the liquid it is also the line of equal density P0 = (Pl + 
p2)/2, taken as the conventional interface separating the media; the y axis is directed 
vertically upwards. The Oxy plane is also the vertical symmetry plane of the basin. 
Internal waves incident on the sphere propagate in the positive x direction. In this 
coordinate system the depth distribution of the density was approximated well by the 
relation 

P(Y) = p0 --  0,5 (p2 --  p~)th (y~5) 

w h e r e  6 i s  a p a r a m e t e r  c h a r a c t e r i z i n g  t h e  t h i c k n e s s  o f  t h e  s m e a r e d  l a y e r ,  a n d  r a n g e d  i n  t h e  
e x p e r i m e n t s  f r o m  0 . 4 2  t o  0 . 5 8  cm. 

The p a r a m e t e r s  o f  t h e  i n t e r n a l  w a v e s  w e r e  r e c o r d e d  w i t h  t h e  h e l p  o f  a r e s i s t i v e - t y p e  
w a v e m e t e r .  The w a v e m e t e r  was  p l a c e d  on  one  s i d e  o f  t h e  s p h e r e .  T h i s  made i t  p o s s i b l e  t o  
j u d g e  t h e  p h a s e  s h i f t s  b e t w e e n  o s c i l l a t i o n s  o f  t h e  wave  p r o f i l e  a n d  t h e  f o r c e s  a c t i n g  on  
t h e  s p h e r e .  The a m p l i t u d e  o f  t h e  w a v e s  was d e t e r m i n e d  t a k i n g  i n t o  a c c o u n t  t h e  ~ T n a m i c a l  
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calibration of the wavemeter. The oscillations of the wave profile and the forces were 
recorded before the arrival of the reflected waves, though the amplitude of these waves in 
the measurement zone did not exceed 5% of the amplitude of the incident waves. 

In the present problem it is most convenient to make comparisons to the linear theory 
of waves in an ideal, unbounded, two-layer liquid. A sufficient condition for modeling 
experimentally infinite depths is 

(2 + e) e2h,,~sg > 3, (1) 

where  E = P2/Pl - 1 = 0 . 0 1 1 ;  hi .  2 i s  t h e  d e p t h  o f  t h e  t o p  ( b o t t o m )  l a y e r .  The minimum v a l u e  
o f  hi .  z i n  t h e  e x p e r i m e n t s  was 0 . 2 5  m. M o r e o v e r ,  t h e  p a r a m e t e r  d/h1.  2 must  be  s m a l l .  I n  t h e  
e x p e r i m e n t s  t h i s  r a t i o  d i d  n o t  e x c e e d  0 . 1 6 .  C a l c u l a t i o n s  w i t h i n  t h e  l i n e a r  t h e o r y  o f  waves  
[2] show t h a t  i n  t h e  e x p e r i m e n t a l  r a n g e  o f  v a l u e s  o f  t h e  p a r a m e t e r s  o f  t h e  p r o b l e m  i t  i s  
s u f f i c i e n t  t h a t  d / h l . z ~  0 . 2 .  

The q u e s t i o n  o f  t h e  i n f l u e n c e  o f  t h e  b a s i n  w a l l s  h a s  b e e n  l e s s  s t u d i e d .  E x p e r i m e n t a l  
data showing that for a vertical cylinder with d/b ~ 0.18 (d is the diameter of the 
cylinder and b is the width of the basin) there is virtually no obstruction of the flow 
with oscillatory motion are presented in [3]. In our experiments d/b = 0.2, but the 
influence of the walls can apparently be neglected, since a sphere obstructs that cross 
section of the basin much less than does a cylinder. 

The experiments were performed in two series. In the first series the dynamical 
action of the waves on a sphere in the absence of any effect due to the variable buoyancy 
force was studied. For this the sphere was placed far enough away from the interface of 
the media so that the condition s > a + r + 36 (s is the distance from the center of the 
sphere to the x axis, r is the radius of the sphere, and a is the amplitude of the internal 
waves) was satisfied. The frequency of the waves and the depth s were varied. The results 
of this series of experiments are presented in Fig. 2. The values of the parameter Fr = (2 
+ s163 which in such problems plays the role of Froude's density number, is plotted 
along the abscissa and the coefficients of the horizontal and vertical forces, defined as 

C~ = F,,../O, Vfz,, Cu = F~/pl V@., (2 )  

are plotted along the ordinate. In Eq. (2) V is the volume of the sphere; 6 a = Qa = ~w2 exp 
(-(2 + a)~2s/ag) is the amplitude of the local accelerations of fluid particles at a depth 
corresponding to the center of the sphere, as determined from the linear theory of waves in 
an ideal unbounded two-layer liquid with a jump in density; Fxa and Fy a are the amplitudes 
of the horizontal and vertical forces. The symbols in the sets a and b refer to the 
coefficients C x and Cy, respectively; the variants 1-4 correspond to relative depths s/d = 
1.38, 1.66, 1.81, and 2.09. 

The condition for absence of any influence of the bottom and of the free surface (I) 
holds for Fr > 0.24. The values of the coefficient C X were obtained by analyzing the 
measurements of the total horizontal force acting on the sphere and the submerged knife 
edges. The measurements performed in the absence of a sphere showed that the amplitude of 
the forces acting on the knife edges does not exceed 5% of the amplitude of the total 
force. Apparently, the knife edges are responsible for the fact that C x is somewhat 
greater than Cy. The seeond possible source of this effect could be the weak irregularity 
of internal waves in the experiment, as expressed in the variation of amplitudes by !3% 
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around the average value. In [4, I0] it is shown that irregular waves reduce the force 
coefficients below their values in the case of regular waves, the effect being stronger for 
the coefficient of the vertical force. 

It follows from Fig. 2 that C x and Cy are virtually constant and close to 1.5~ i.e., 
the value predicted by the theory of an ideal liquid for a sphere in an oscillatory fl0w: 
The increase in C x and decrease in Cy for small values of Fr are due to approximate 
kinematics of liquid particles in Eq. (2) used for normalization. The amplitudes ua and wa 
were estimated according to a theory that takes into account the finiteness of the depths 
h I and h z. In this case C x and Cy were found to be constant in the entire range of 
experimental values of Fr. 

The relation (2) with constant C x and Cy presumes that the loads from a wave of unit 

amplitude have for a prescribed depth of the sphere a maximum at e,= /a~(2 + ~)s~ This 

relation was satisfied in the experiments to within 1%. 

The pattern of phase shifts between the internal waves and the oscillations of the 
vertical and horizontal forces shows that the force interaction is mainly determined by the 

inertial component. The phase shift is r = 90~ + ~i for the horizontal force and r = 180~ 
O2 for the vertical force. The increments arising as a result of the effect of viscosity ~I 
= 9 • 2 ~ and ~z = 18 • 2 ~ are small and are virtually independent of the frequency. 

The Keiegan-Carpenter number, defined as K e = uaT/d (u a is the amplitude of the 
velocity of a liquid particle at a depth corresponding to the position of the center of the 
sphere and T is the period of the oscillations), varied from 0.06 to 0.95 and Reynolds 
number Re = uad/v varied from i0 to 280. 

In such problems the forces are separated into inertial and damping components with 
the help of Morrison's equation. In the component form this equation is [4] 

I 3" Ca~p~d2uV'-~+ w~+---g--C~xp~d u, 

t 

where u and w are the horizontal and vertical components of the velocity of the liquid 
particles; u and ~ are the local accelerations; C~ and C~ are the coefficients of the 
damping forces; and C~x and Cmy are the coefficients of the inertial forces. 
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Equations (2), together with information on the phase shifts, give the following 
relations: 

3 C~K~ sirl ~ t  + C ~  cos ~t ,  C~ cos  ( ~ t  - -  ~ )  = 

3 
Cy sin ((ot - -  ~2) =: - -  ~ CdyKc cos o)t ~ ( ' ~  sin ~t .  

The experimental results are described well by Morrison's equation with C~ = C x cos 
~i, Cmy = Cy cos ~z and the relations C~ = 8~C X sin ~J3Kc, C a = 8~Cy sin ~2/3Kc (C~ = 1.43, 
Cmy = 1.26, C~ = 1.7/K=, Cdy = 3.44/Kc). These values of the coefficients agree well with 
the results obtained for regular surface waves [4, 5]. 

The forces acting on a sphere located in the pycnocline were measured in the second 
series of experiments. In this case, the buoyancy force was stronger than the inertial 
force and the vertical force varied almost in-phase with the oscillations of the interface 
separating the media. If the sphere was located precisely at the center of the pycnocline, 
i.e., s = 0, then frequency doubling, compared with the frequency of the incident waves, is 
observed for the horizontal force. This effect is explained by the balance of the inertial 
forces on the sphere with nearly equal densities of the top and bottom layers. An example 
of the records of such a process is displayed in Fig. 3. The dimensionless time is plotted 
along the abscissa as a fraction of the period of the oscillations and the values of the 
vertical and horizontal forces plotted along the ordinate (curves 1 and 2, respectively); 
the forces are dimensionless and measured in units of the maximum value of the vertical 
force over a period of the oscillations Fm (F m = 9.1.10 -4 N, a = i.I cm, 6 = 0.48 cm, Fr = 

0.34). The dashed line is the wave profile. 

If the center of the sphere is displaced somewhat from the line of equal density P0, 
then the time dependence of F x and Fy is complicated, both the amplitude and the form of the 
force action itself changing with increasing frequency of the waves. An example of such 
evolution with relative depth of the sphere s/d = 0.26 and thickness of the smeared layer 6 = 
0.51 cm is displayed in Fig. 4. All notations are similar to those employed in Fig. 3; the 
relative wave amplitude a/d = 0.255; 0.275; 0.225, F m = 6.88-10-4; 6.88.10-4; 2.84 "10 -4 H, 
Fr = 0.255; 0.349; 0.525 for variants a-c, respectively. The traces displayed in Fig. 4 
indicate that the nonlinearity has a significant effect, and the nonlinear effects have a 
tendency to weaken with increasing frequency. 

I thank E. M. Romanov for providing extensive assistance in the experiments and V. I. 
Bukreev and I. V. Sturov for assistance in formulating the problem and for a discussion of 

the results. 

LITERATURE CITED 

i. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

i0. 

G. X. Wu and R. E. Taylor, "The exciting force on a submerged spheroid in regular 

waves," J. Fluid Mech., 182 (1987). 
K. lwata, N. Mizutani, and K. Tsuzuki, "Numerical analysis of a diffracted wave force 
acting on a submerged sphere," Proc. JSCE, No. 411 (1989). 
G. Moberg, Wave Forces on a Vertical Slender Cylinder, G6teborg (1988) (Chalmers 

Univ. Technol. Rep. Ser. A: 16). 
K. Iwata, N. Mizutani, and S. Kasai, "Irregular wave forces acting on a submerged 
sphere," Coastal Engineering in Japan, 30, No. 1 (1987). 
K. Iwata and N. Mizutani, "Wave forces acting on a submerged sphere under a regular 

progressive wave," Proc. JSCE, No. 405 (1989). 
K. E. Lofquist and L. P. Purtell, "Drag on a sphere moving horizontally through a 
stratified liquid," J. Fluid Mech., 148 (1984). 
E. Ya. Sysoeva and Yu. D. Chashechki n, "Experimental investigation of the vortex 
structure of the stratified wake flow behind a sphere," Preprint No. 447, Institute 
of Applied Mathematics, Academy of Sciences of the USSR, Moscow (1990). 
Yu. V. Pyl'nev and M. Yu. Shumaev, "Laboratory modeling of the motion of submerged 
bodies at the interface of media with different densities," in: Abstracts of Reports 
at the All-Union Conference on Problems of Stratified Flows, Part 2, Kanev (1991). 
Yu. V. Razumeenko, "Laboratory modeling of the interaction of internal waves with 

underwater apparatus," ibid. 
J. R. Chaplin, "Loading on a horizontal cylinder in irregular waves at large scale," 
Int. J. Offshore Polar Engng., !, No. 4 (1991). 

546 


